Synthesis of biaryls via oxidative coupling reactions of homoleptic and

heteroleptic tetraarylzincate reagents

Preparation of biaryl compounds

 $M = Li, MgX, B(OR)_2, SiR_3, ZnR, SnR_3$

- Oxidative coupling reactions utilizing:
 - Overstoichiometric amount of a transition-metal (TM) halide
 - Catalytic amount of TM halide with an oxidízing agent (O2, dry air, (di)haloalkanes, (imino)quinones), nitroarenes, etc.)
 - TM-free protocols

• Few examples on aryl-aryl cross-coupling reactions

Oxidative coupling reactions of organozinc reagents

Oxidation of heteroleptic diorganozinc reagents: Oxidation of heteroleptic triorganozincates: R² [O] 1. *n*BuLi (1.1 equiv.), Et₂O (0.5 M), rt, 10 min MeO £ Li OMe .OMe OMe 2. R (1.5 equiv.), Et₂O (0.5 M), 0°C, 30 min I-49 I-50 I-51 Cp₂FePF₆ (3.0 equiv.): 33% 0 100 69 AgBF₄ (6.0 equiv.): 55% 31 : VO(OEt)Cl₂ (3.0 equiv.) or AgBF₄ (6.0 equiv.) Et₂O (0.25 M), rt, 3 - 16 h Br 1. *n*BuLi (1.1 equiv.), Et₂O (0.5 M), rt, 10 min 4% - 60% 31% - 92% \mathbb{R}^2 = Me, Et, *n*Bu VO(OEt)Cl₂ (3.0 equiv.) Et₂O (0.25 M), rt, 3 - 16 h 6% - 62% 24% - 92%

 \mathbb{R}^2 = Me, *n*Bu, Me — , *n*Hex — , TMS —

Oxidative coupling reactions of boronate complexes

Didier (2020 & 2021)

Vanadylchloride promoted oxidative cross and homo-coupling reaction

Θ

M⊕

Silylchloride promoted oxidative cross- and homo-coupling reaction

Electrochemical oxidative cross-coupling of heteroleptic tetraarylborates

14% - 87%

Photochemical oxidative cross-coupling of heteroleptic tetraarylborates

Studer (2020)

M = Li, Na, K

Addition to diorganozinc reagents:

Halogen-zinc exchange & deprotonative metalation:

$$R^{1}-X \xrightarrow{R^{2}_{4}ZnLi_{2}} R^{1}R^{2}_{3}ZnLi_{2} + R^{1}_{2}R^{2}_{2}ZnLi_{2} + R^{1}_{3}R^{2}ZnLi_{2} + R^{1}_{4}ZnLi_{2}$$

$$R^{1} = aryl, alkinyl$$

$$R^{2} = alkyl, alkoxy$$

$$X = Br, I, H$$

obtained zincate reagent depending on:

nature of tetraorganozincate
amount/equivalents of tetraorganozincate

Application of Tetraorganozincates

- Synthesis & characterization of tetraarylzincates
- Develop oxidative coupling reaction towards symmetrical biaryls under:
 - Photochemical conditions
 - Thermal conditions
- Testing conditions for cross-coupling reactions & differently hybridized substrates

Optimization – solvent

Entry	Solvent	Isolated yield [%]
1a	THF	30
1b	THF	50
2a	2-MeTHF	72
2b	2-MeTHF	60
3	toluene	28
4	DCE	36
5	Dioxane	8
6	DMSO	16
7	DMF	12
8	EtOAc	8
10	MeCN	18
11	DME	54
12	diglyme	42

Optimization – oxidizing agent

Optimization – time, temperature & concentration

Entry	Ar-MgBr [equiv.]	C₁ [M]	Solvent	T [°C]	C ₂ [M]	Isolated yield [%]
1	4.50	1.00	2-MeTHF	50	0.05	48
2	5.00	1.00	2-MeTHF	50	0.05	60
3	4.10	1.00	2-MeTHF	50	0.05	52
4	4.10	1.00	2-MeTHF	50	0.10	76
5	4.10	1.00	2-MeTHF	50	0.25	54
6	4.10	1.00	2-MeTHF	60	0.05	65
7	4.10	0.05	THF	rt	0.05	40
Entry	C₁ [M]	t₁ [h]	T [°C]	t₂ [h]	Isolated yield [%]	
1	1.00	1	rt	1	56	
2	0.05	16	rt	1	36	
3	0.05	5	50	16		48
4	0.05	5	50	1		32
5	0.05	16	50	24	44	

Entry	Ar–M	Solvent	T [°C]	t [h]	Isolated yield [%]
1	Ar–Li	2-MeTHF	50	16	6
2	Ar–Li	THF	50	16	62
3	Ar ₂ Mg	THF	50	16	48
4	Ar–MgCl·LiCl	THF	50	16	28

Time dependent analysis of (by)product formation

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Scope & limitations

comparing: O reaction conditions O mechanism O yield O scope O FG tolerance

application of (kinetic) heteroleptic higher-order zincates in oxidative cross-coupling

• electronically biased arenes • statistical distribution of homo- and cross-coupling products

o potential for (atroposelective) cross-coupling reactions o potential for non-electronically biased arenes

