Dirigierende Chirale Sulfoxide in Atropselektiven MAXIMILIANS-UNIVERSITÄT Kupplungsreaktionen und (De)Funktionalisierungen

1

02.06.2025, Lennart Kirchhoff Präsentation der Masterarbeit unter Aufsicht und Betreuung von Dino Berthold

LUDWIG-

MÜNCHEN

Herstellung der Sulfoxidsubstrate

Reaktionsbedingungen:

a) LDA (*n*BuLi (1.2 equiv.), *i*Pr₂NH (1.3 equiv.)), THF (0.6 M), -78 °C, 1 h. **b)** (CCl₂Br)₂ (1.2 equiv.), THF (0.85 M), -78-rt, 18 h.

c) I₂ (1.2 equiv.), THF (0.85 M), -78-rt, 18 h.

Suzuki-Kreuzkupplungen

Reaktionsbedingungen:^[2]

S-6c oder S-7c (1.0 equiv.), 8a oder 8b (2.0 equiv.), Pd(OAc)₂ (10 mol-%), SPhos (15 mol-%), Cs₂CO₃ (4.0 equiv.), Dioxan/H₂O (5:1, 0.1 M), 70°C, 1 h.

Reaktionsbedingungen:^[2]

S-6c oder S-7c (1.0 equiv.), 8a oder 8b (2.0 equiv.), Pd(OAc)₂ (10 mol-%), SPhos (15 mol-%), Cs₂CO₃ (4.0 equiv.), Dioxan/H₂O (5:1, 0.1 M), 70°C, 18 h.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Problematiken beim Einsatz vom tert-Butylsulfoxid

Negishi-Kreuzkupplungen

Reaktionsbedingungen:

S-6c (1.0 equiv.), **8b** (2.0 equiv.), Pd(PPh₃)₂ (10 mol-%) oder Ni(DME)Cl₂ (20 mol-%) oder CoCl₂ (30 mol-%), 2,2'-Bipy (30 mol-%), THF/NMP (4:1, 0.2 M) oder THF (0.2 M), rt oder 40°C, 18 h

S-7c (1.0 equiv.), **8a** oder **8b** (2.0 equiv.), Ni(COD)₂ (10 mol-%), 4,4'-MeO-2,2'-Bipy (15 mol-%) THF/NMP (4:1, 0.2 M), 80°C, 18 h

Homokupplungen und Oxidation

S-6a oder **S-7a** (1.0 equiv.)

1. LDA (*n*BuLi (1.2 equiv.), *i*Pr₂NH (1.3 equiv.)), THF (0.6 M), -78°C, 1 h. **2.** FeCl₃ (1.2 equiv.), THF (0.35 M), -78 °C-rt, 18 h.

Baux R^{aux} 0 *m*CPBA n. MeO MeO -೧ S=O MeO MeO. O CH₂Cl₂ rt, 1 h ĭ[°]O R^{aux} Raux *M*,*S*-16: R^{aux} = *t*Bu *M*-18: R^{aux} = *t*Bu **M,S-17**: R^{aux} = pTol 86% yield **M-19**: R^{aux} = *p*Tol >99% yield

Reaktionsbedingungen:

S-16a oder **S-17a** (1.0 equiv.), *m*CPBA (3.0 equiv.), CH₂Cl₂ (0.34 M), rt, 1 h.

7

[3] Q.-A. Chen, X. Dong, M.-W. Chen, D.-S. Wang, Y.-G. Zhou, Y.-X. Li, Org. Lett., 2010, 12(9), 1928–1931.

[4] Q.-Q. Zhou, S. J. S. Düsel, L.-Q. Lu, B. König, W.-J. Xiao, *Chem. Commun.*, **2019**, 55, 107–110.
[5] F. Yue, J. Dong, Y. Liu, Q. Wang, *Org. Lett.*, **2021**, 23, 2477–2481.
[6] F. Yue, J. Dong, Y. Liu, Q. Wang, *Org. Biomol. Chem.*, **2021**, 19, 8924–8928.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

[7] J. Bai, T. Wang, B. Dai, Q. Liu, P. Yu, T. Jia, Org. Lett., 2021, 23, 5761–5765.

Funktionalisierung der Sulfoxidbiaryle

Eintrag	P,S-11 oder P,S-12 (<i>dr</i>)	RLi	Mel [equiv.]	Konzentration [M]	Produktverhältnis [M-24:25] oder [M-26:27]	er
1	P,S-11 (64:36)	<i>t</i> BuLi (4.0 equiv.)	10.0	0.05	2.5:1	n.d.
2	P,S-12 (58:42)	<i>t</i> BuLi (4.0 equiv.)	10.0	0.05	2.1:1	61:39
3	P,S-11 (64:36)	PhLi (4.0 equiv.)	10.0	0.05	11.5:1	n.d.
4	P,S-12 (58:42)	PhLi (4.0 equiv.)	10.0	0.05	12.0:1	66:34

Funktionalisierung der Sulfoxidbiaryle

3.985

2

55.6

13.6

0.0566

65.947

1.071

Funktionalisierung der Sulfoxidbiaryle

Funktionalisierung der Sulfoxidbiaryle

P,S-11 oder **P,S-12** (1.0 equiv.), *i*PrMgCl·LiCl (2.0 equiv.), B₂pin₂ (5.0 equiv.), THF (0.25 M), 0°C-rt, 18 h.

Reaktionsbedingungen:^[7]

*P***,***S***-11** (1.0 equiv.), *n*BuOH (2.0 equiv.), KO*t*Bu (2.0 equiv.), DME (0.5 M), 110°C, 18 h.

[7] J. Bai, T. Wang, B. Dai, Q. Liu, P. Yu, T. Jia, Org. Lett., 2021, 23, 5761–5765.
[8] J. Bortoluzzi, V. Jha, G. Levitre, M. J. Fer, J. Berreur, G. Masson, A. Panossian, F. R. Leroux, J. Org. Chem., 2018, 83, 7751–7761.

Fortschritt in der Totalsynthese von Mastigophoren

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Reaktionsbedingungen:

a) DHP (10.0 equiv.), PPTS (10 mol-%), CH₂Cl₂ (1.1 M), rt, 4 h.
b) *n*BuLi (1.5 equiv.), I₂ (2.0 equiv.), THF (0.5 M), -78°C-rt, 18 h.
c) PPA (1.0 M), 120°C, 4 h.

Ausblick und zukünftige Ambitionen

Trifluormethylgruppe als Alternative

[9] W. Zhong, X. Liu, Tetrahedron Letters, 2014, 55, 4909–4911.

Ausblick und zukünftige Ambitionen

<u>Kupplungsreaktionen</u>

[10] S. N. S. Vasconcelos, J. S. Reis, I. M. de Oliveira, M. N. Balfour, H. A. Stefani, Tetrahedron, 2019, 75(13), 1865–1959.

Ausblick und zukünftige Ambitionen

Funktionalisierungsreaktionen

 $R = pTol, CF_3$

R' = Alk, Ar, Bpin

Vielen Dank für die Aufmerksamkeit